Schedule
Time | 18.04. | 19.04. | 20.04. | 21.04. |
---|---|---|---|---|
08:00 | Arrival | Breakfast at Taivas | Breakfast at Taivas | Breakfast at Taivas |
08:30 | Software I (Chair: Carolin) T4: Ransell (FIN) T5: Armi (FIN) T6: Jarno (FIN) |
ML for Biomolecules and Materials (Chair: Adil) T11: Mirela (LUX) T12: Matteo (FIN) T13: Nils (LUX) T14: Matthias (FIN) |
ML for Clean Energy (Chair: Adil) T17: Ariadni (LUX) T18: Matilda (FIN) T19: Pascal (FIN) |
|
09:00 | ||||
09:30 | ||||
10:00 | ||||
10:30 | ||||
11:00 | Lunch at Ämmilä | Closing Remarks | ||
11:30 | Lunch at Ämmilä | Lunch at Ämmilä | ||
12:00 | Open Discussion | |||
12:30 | Open Discussion | Departure | ||
13:00 | ||||
13:30 | ||||
14:00 | ||||
14:30 | ||||
15:00 | ||||
15:30 | Opening Remarks | |||
16:00 | Exciting Kickoff (Chair: Ransell ) T1: Carolin (LUX) T2: Hilda (FIN) T3: Adil (LUX) |
|||
16:30 | EST Development (Chair: Hilda) T7: Antonio (FIN) T8: Matej (LUX) |
Software II (Chair: Hilda) T15: Joakim (FIN) T16: Grégory (LUX) |
||
17:00 | ||||
17:30 | ||||
18:00 | Dinner at Ämmilä | Dinner at Ämmilä | Dinner at Break Sokos Hotel | |
18:30 | ||||
19:00 | ||||
19:30 | Social Evening | Coarse-Grained Models for vdW Interactions (Chair: Ransell) T9: Almaz (LUX) T10: Ian (LUX) |
Social Evening | |
20:00 | ||||
20:30 | ||||
21:00 | Posters & Open Discussion | |||
21:30 | ||||
22:00 |
Participant | Country | P/T | Title of the Contribution | |
---|---|---|---|---|
PIs | ||||
Prof. Alexandre Tkatchenko | LUX | - | - | |
Prof. Patrick Rinke | FIN | - | - | |
Assistant Prof. Milica Todorović | FIN | - | - | |
Organizers | ||||
Adil Kablyda | LUX | T | Machine Learning Force Fields for Large Molecules | |
Dr. Carolin Müller | LUX | T | Exploring Photoinduced Isomerization Reactions – A story about Surface Hopping and Machine Learning | |
Dr. Hilda Sandström | FIN | T | Characterizing atmospheric molecules for machine learning | |
Dr. Ransell D'Souza | FIN | T | BOSS code and its functionalities | |
Participants | ||||
Almaz Khabibrakhmanov | LUX | T | Towards the Universal van der Waals potential | |
Dr. Antonio Delesma | FIN | T | Cubic scaling algorithm for RPA and GW in the numeric atom-centered orbitals framework | |
Dr. Ariadni Boziki | LUX | T | The role of van der Waals interactions on the response properties of materials | |
Dr. Armi Tiihonen | FIN | T | More trustworthy Bayesian optimization of materials properties by adding human into the loop | |
Grégory Cordeiro Fonseca | LUX | T | FFAST: Force Field Analysis Tools and Software | |
Han Le | FIN | P | Design of Experiments: Quantitative Comparison of Bayesian Optimization with Response Surface Methodology | |
Henrietta Homm | FIN | P | Efficient dataset generation for machine learning | |
Ian Sosa | LUX | T | Bringing Atomistic Interactions to the Continuum: Many-Body van der Waals and Beyond | |
Dr. Igor Poltavsky | LUX | - | - | |
Jarno Laakso | FIN | T | Update to the DScribe Library: Descriptor Derivatives | |
Dr. Joakim Löfgren | FIN | T | Bayesian optimization for experimental materials design | |
Dr. Leonardo Medrano-Sandonas | LUX | - | - | |
Matej Ditte | LUX | T | Quantum Embedding of Electrons and Drude Oscillators | |
Matilda Sipilä | FIN | T | Applying natural language processing to materials science | |
Matteo Iannacchero | FIN | T | AI-yarn - Bayesian Optimization for e-textiles | |
Dr. Matthias Stosiek | FIN | T | Lignin Carbohydrate Complexes investigated with Nuclear Magnetic Resonance Spectroscopy and Artificial Intelligence | |
Mirela Puleva | LUX | T | Synergy between Physics and Machine Learning for Property Prediction of Organic Systems | |
Nils Davoine | LUX | T | Exploring Kernel Machine Molecular Dynamics (KMMD) Progress and Challenges Ahead | |
Nima Emami | FIN | P | Machine learning Optimization of Materials flow in Battery recyling | |
Nitik Bhatia | FIN | P | Infra-red spectra of functionalized copper nanoparticles using ab initio molecular dynamics | |
Dr. Pascal Henkel | FIN | T | Exploring and identifying promising mixed-metal chalcohalides Sn2BCh2X3 compounds for photovoltaic applications | |
Prajwal Pisal | FIN | P | A data-driven approach toward designing efficient catalysts for CO2 to methanol conversion | |
Tobias Henkes | LUX | P | Towards Gradient Domain Machine Learning for Explicit Solvation |