ESTML 2023

Schedule

Time 18.04. 19.04. 20.04. 21.04.
08:00 Arrival Breakfast at Taivas Breakfast at Taivas Breakfast at Taivas
08:30 Software I
(Chair: Carolin)
T4: Ransell (FIN)
T5: Armi (FIN)
T6: Jarno (FIN)
ML for Biomolecules and Materials
(Chair: Adil)
T11: Mirela (LUX)
T12: Matteo (FIN)
T13: Nils (LUX)
T14: Matthias (FIN)
ML for Clean Energy
(Chair: Adil)
T17: Ariadni (LUX)
T18: Matilda (FIN)
T19: Pascal (FIN)
09:00
09:30
10:00
10:30
11:00 Lunch at Ämmilä Closing Remarks
11:30 Lunch at Ämmilä Lunch at Ämmilä
12:00 Open Discussion
12:30 Open Discussion Departure
13:00
13:30
14:00
14:30
15:00
15:30 Opening Remarks
16:00 Exciting Kickoff
(Chair: Ransell )
T1: Carolin (LUX)
T2: Hilda (FIN)
T3: Adil (LUX)
16:30 EST Development
(Chair: Hilda)
T7: Antonio (FIN)
T8: Matej (LUX)
Software II
(Chair: Hilda)
T15: Joakim (FIN)
T16: Grégory (LUX)
17:00
17:30
18:00 Dinner at Ämmilä Dinner at Ämmilä Dinner at Break Sokos Hotel
18:30
19:00
19:30 Social Evening Coarse-Grained Models for vdW Interactions
(Chair: Ransell)
T9: Almaz (LUX)
T10: Ian (LUX)
Social Evening
20:00
20:30
21:00 Posters & Open Discussion
21:30
22:00
Oral contribution: 30 min (Presentation) + 15 min (Discussion)

Participants

Participant Country P/T Title of the Contribution
PIs
Prof. Alexandre Tkatchenko LUX - -
Prof. Patrick Rinke FIN - -
Assistant Prof. Milica Todorović FIN - -
Organizers
Adil Kablyda LUX T Machine Learning Force Fields for Large Molecules
Dr. Carolin Müller LUX T Exploring Photoinduced Isomerization Reactions – A story about Surface Hopping and Machine Learning
Dr. Hilda Sandström FIN T Characterizing atmospheric molecules for machine learning
Dr. Ransell D'Souza FIN T BOSS code and its functionalities
Participants
Almaz Khabibrakhmanov LUX T Towards the Universal van der Waals potential
Dr. Antonio Delesma FIN T Cubic scaling algorithm for RPA and GW in the numeric atom-centered orbitals framework
Dr. Ariadni Boziki LUX T The role of van der Waals interactions on the response properties of materials
Dr. Armi Tiihonen FIN T More trustworthy Bayesian optimization of materials properties by adding human into the loop
Grégory Cordeiro Fonseca LUX T FFAST: Force Field Analysis Tools and Software
Han Le FIN P Design of Experiments: Quantitative Comparison of Bayesian Optimization with Response Surface Methodology
Henrietta Homm FIN P Efficient dataset generation for machine learning
Ian Sosa LUX T Bringing Atomistic Interactions to the Continuum: Many-Body van der Waals and Beyond
Dr. Igor Poltavsky LUX - -
Jarno Laakso FIN T Update to the DScribe Library: Descriptor Derivatives
Dr. Joakim Löfgren FIN T Bayesian optimization for experimental materials design
Dr. Leonardo Medrano-Sandonas LUX - -
Matej Ditte LUX T Quantum Embedding of Electrons and Drude Oscillators
Matilda Sipilä FIN T Applying natural language processing to materials science
Matteo Iannacchero FIN T AI-yarn - Bayesian Optimization for e-textiles
Dr. Matthias Stosiek FIN T Lignin Carbohydrate Complexes investigated with Nuclear Magnetic Resonance Spectroscopy and Artificial Intelligence
Mirela Puleva LUX T Synergy between Physics and Machine Learning for Property Prediction of Organic Systems
Nils Davoine LUX T Exploring Kernel Machine Molecular Dynamics (KMMD) Progress and Challenges Ahead
Nima Emami FIN P Machine learning Optimization of Materials flow in Battery recyling
Nitik Bhatia FIN P Infra-red spectra of functionalized copper nanoparticles using ab initio molecular dynamics
Dr. Pascal Henkel FIN T Exploring and identifying promising mixed-metal chalcohalides Sn2BCh2X3 compounds for photovoltaic applications
Prajwal Pisal FIN P A data-driven approach toward designing efficient catalysts for CO2 to methanol conversion
Tobias Henkes LUX P Towards Gradient Domain Machine Learning for Explicit Solvation